2)

$$
\lim _{x \rightarrow 0} \frac{\ln (x+1)}{x}=\left\langle\frac{\ln (0+1)}{0}\right\rangle=\left\langle\frac{0}{0} \geqslant\right.
$$

ino.

$$
\begin{aligned}
& \lim _{x \rightarrow 10} \frac{(\ln (x+1))^{\prime}}{x^{\prime}}=\lim _{x \rightarrow 0} \frac{\frac{1}{x+1}}{1} \\
& =\lim _{x \rightarrow 0} \frac{1}{x+1}=\left\langle\frac{1}{0+1}\right\rangle \\
& =1
\end{aligned}
$$

$$
\stackrel{\text { B. A. }}{\Rightarrow} \lim _{x \rightarrow 0} \frac{\ln (x+1)}{x}=1
$$

b) $\lim _{x \rightarrow 0} \frac{\ln (\cos (x))}{x^{2}}=\ll \frac{\ln (\cos (0))}{0^{2}} \gg=\ll \frac{0}{0} \gg$

$$
\lim _{x \rightarrow 0} \frac{(\ln (\cos (x)))^{\prime}(\ln (x))^{\prime}=\frac{\mu^{\prime}}{n}}{\left(x^{2}\right)^{\prime}}=\lim _{x \rightarrow 0} \frac{\frac{\sin (x)}{\cos (x)}}{2 x}
$$

$$
\left.\begin{array}{l}
=\lim _{x \rightarrow 0} \frac{-\tan (x)}{2 x}=\left\langle\frac{-\tan (0)}{2 \cdot 0} \geqslant=\left\langle\frac{0}{0} \gg\right.\right. \\
\lim _{x \rightarrow 0} \frac{(-\tan (x))^{\prime}}{(2 x)^{\prime}}
\end{array}=\lim _{x \rightarrow 0} \frac{-\frac{1}{\cos ^{2}(x)}}{2}\right] .
$$

B.-H.

$$
\Rightarrow \lim _{x \rightarrow 0} \frac{\ln (\cos (x))}{x^{2}}=-\frac{1}{2}
$$

c) $\lim _{x \rightarrow e} \frac{\ln (x)-1}{x-c}=\ll \frac{\ln ^{1}(e)-1}{e-e} \gg=<\frac{0}{0} \gg$

$$
\lim _{x \rightarrow e} \frac{(\ln (x)-1)^{\prime}}{(x-e)^{\prime}}=\lim _{x \rightarrow e} \frac{\frac{1}{x}-0}{1-0}=\lim _{x \rightarrow e} \frac{1}{x}
$$

$$
\begin{aligned}
& =\ll \frac{1}{e} \gg=\frac{1}{e} \\
& \text { B.-H. } \\
& \Rightarrow \lim _{x \rightarrow e} \frac{\ln (x)-1}{x-e}=\frac{1}{e} \\
& \text { d) } \lim _{x \rightarrow 2} \frac{\ln \left(x^{2}-3\right)}{2-x}=<\frac{\ln \left(\tilde{x}^{1}-3\right)}{2-2} \gg=<\frac{0}{0} \gg \\
& \lim _{x \rightarrow 2} \frac{\left(\ln \left(x^{2}-3\right)\right)^{\prime}}{(2-x)^{\prime}}=\lim _{x \rightarrow 2} \frac{\frac{\left(x^{2}-3\right)^{\prime}}{x^{2}-3}}{(2-x)^{\prime}} \\
& =\lim _{x \rightarrow 2} \frac{\frac{2 x}{x^{2}-3}}{0-1}=\lim _{x \rightarrow 2}-\frac{2 x}{x^{2}-3} \\
& =\ll-\frac{2 \cdot 2}{4-3} \gg=-4 \\
& \text { B.-H. } \\
& \Rightarrow \lim _{x \rightarrow 2} \frac{\ln \left(x^{2}-3\right)}{2-x}=-4
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } \lim _{x \rightarrow-\infty} \frac{\ln \left(x^{2}+1\right)}{x}=\ll \frac{\ln \left((-\infty)^{2}+1\right)}{-\infty} \gg=\stackrel{+\infty}{+\infty} \gg \text { ind. } \\
& \lim _{x \rightarrow-\infty} \frac{\left(\ln \left(x^{2}+1\right)\right)^{\prime}}{(x)^{\prime}}=\lim _{x \rightarrow-\infty} \frac{\frac{\left(x^{2}+1\right)^{\prime}}{x^{2}+1}}{1} \\
& \begin{aligned}
&=\lim _{x \rightarrow-\infty} \frac{2 x}{x^{2}+1}=\lim _{x \rightarrow-\infty} \frac{2 x}{x^{2}}=\lim _{x \rightarrow-\infty} \frac{2}{x} \\
& \text { On pent négliger cela } \quad=\left\langle\frac{2}{-\infty}>=0\right.
\end{aligned} \\
& \text { B. H. } \\
& \stackrel{\lim }{x \rightarrow-\infty} \frac{\ln \left(x^{2}+1\right)}{x}=0 \\
& \text { f) } \lim _{x \rightarrow+\infty} \frac{\ln (x)+1}{1-\ln (x)}=\left\langle\frac{+\infty+1}{1-\infty}\right\rangle=\left\langle<\frac{+\infty}{-\infty} \gg\right. \\
& \lim _{x \rightarrow+\infty} \frac{(\ln (x)+1)^{\prime}}{(1-\ln (x))^{\prime}}=\lim _{x \rightarrow+\infty} \frac{\frac{1}{x}+0}{0-\frac{1}{x}}=\lim _{x \rightarrow+\infty} \frac{1 / x}{-1 / x} \\
& =\lim _{x \rightarrow+\infty} \frac{1}{\not} \cdot \frac{-x}{1}=\lim _{x \rightarrow+\infty}-1=-1
\end{aligned}
$$

Notam: $\ln ^{2}(x)=(\ln (x))^{2}$
B. -H.
$\stackrel{\text { b. }-\pi .}{\Rightarrow} \lim _{x \rightarrow+\infty} \frac{\ln (x)+1}{1-\ln (x)}=-1$
g) $\lim _{x \rightarrow+\infty} \frac{\ln \left(x^{2}\right)}{\ln ^{2}(x)}=\ll \frac{\ln \left((+\infty)^{2}\right)}{\ln ^{2}(+\infty)} \gg \lll+\infty$
$\lim _{x \rightarrow+\infty} \frac{\left(\ln \left(x^{2}\right)\right)^{\prime}}{\left[(\ln (x))^{2}\right]^{\prime}}=\lim _{x \rightarrow+\infty} \frac{\frac{\left(x^{2}\right)^{\prime}}{x^{2}}}{2 \ln (x) \cdot \frac{1}{x}}$
$=\lim _{x \rightarrow \infty} \frac{\frac{2 x}{x^{2}}}{2 \ln (x) \cdot \frac{1}{x}}=\lim _{x \rightarrow+\infty} \frac{2 x}{x^{2} 2 \cdot 2 \cdot \ln (x)} \cdot \frac{x}{1}$
$=\lim _{x \rightarrow+\infty} \frac{1}{\ln (x)}=\ll \frac{1}{\ln (+\infty)} \gg=\left\langle<\frac{1}{+\infty} \gg=0\right.$
$\stackrel{\text { B. A. }}{\Longrightarrow} \lim _{x \rightarrow+\infty} \frac{\ln \left(x^{2}\right)}{\ln ^{2}(x)}=0$

$$
\begin{aligned}
& \text { h) } \lim _{x \rightarrow+\infty} \frac{\ln (x)}{e^{x}}=\ll \frac{+\infty}{+\infty} \gg \text { iNOE'TRRM } \\
& \lim _{x \rightarrow+\infty} \frac{(\ln (x))^{\prime}}{\left(e^{x}\right)^{\prime}}=\lim _{x \rightarrow+\infty} \frac{\mathbb{1} x}{e^{x}} \\
& =\lim _{x \rightarrow+\infty} \frac{1}{x} \cdot \frac{1}{e^{x}}=\lim _{x \rightarrow+\infty} \frac{1}{x \cdot e^{x}} \\
& =\ll \frac{1}{+\infty \cdot+\infty} \gg \lll \frac{1}{+\infty} \gg=0
\end{aligned}
$$

INDE'TRRPUNE'
B. -H.

$$
\stackrel{\text { B.-A. }}{\Rightarrow} \lim _{x \rightarrow+\infty} \frac{\ln (x)}{e^{x}}=0
$$

