$$
\text { c) } \begin{aligned}
& \left(\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}}\right]^{\prime}=\frac{1}{2} \cdot\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}-1} \cdot\left(\frac{x-1}{x+1}\right)^{\prime} \\
= & \frac{1}{2}\left(\frac{x-1}{x+1}\right)^{-\frac{1}{2}} \cdot \frac{x+1-(x-1)}{(x+1)^{2}} \\
= & \frac{1}{2} \frac{\sqrt{x+1}}{\sqrt{x-1}} \cdot \frac{1}{(x+1)^{2}} \\
= & \frac{1}{\sqrt{x-1}} \cdot \frac{(x+1)^{\frac{1}{2}}}{(x+1)^{2}} \\
= & \frac{1}{\sqrt{x-1}} \cdot(x+1)^{-\frac{3}{2}}=\frac{1}{\sqrt{x-1} \sqrt{(x+1)^{3}}} \\
= & \frac{1}{\left[(x-1)(x+1)(x+1)^{2}\right]^{\frac{1}{2}}}=\frac{1}{\sqrt{x^{2}-1} \cdot(x+1)}
\end{aligned}
$$

